Involvement of an ATP-dependent protease, PA0779/AsrA, in inducing heat shock in response to tobramycin in Pseudomonas aeruginosa.

نویسندگان

  • Kristen N Kindrachuk
  • Lucía Fernández
  • Manjeet Bains
  • Robert E W Hancock
چکیده

The adaptive resistance of Pseudomonas aeruginosa to aminoglycosides is known to occur during chronic lung infections in cystic fibrosis patients in response to nonlethal concentrations of aminoglycosides. Not only is it difficult to achieve high levels of drug throughout the dehydrated mucus in the lung, but also steep oxygen gradients exist across the mucus layer, further reducing the bactericidal activity of aminoglycosides. In this study, microarray analysis was utilized to examine the gene responses of P. aeruginosa to lethal, inhibitory, and subinhibitory concentrations of tobramycin under aerobic and anaerobic conditions. While prolonged exposure to subinhibitory concentrations of tobramycin caused increased levels of expression predominantly of the efflux pump genes mexXY, the greatest increases in gene expression levels in response to lethal concentrations of tobramycin involved a number of heat shock genes and the PA0779 gene (renamed here asrA), encoding an alternate Lon protease. Microarray analysis of an asrA::luxCDABE transposon mutant revealed that the induction of heat shock genes in response to tobramycin in this mutant was significantly decreased compared to that in the parent strain. The level of expression of asrA was induced from an arabinose-inducible promoter to 35-fold greater than wild-type expression levels in the absence of tobramycin, and this overexpression alone caused an increased expression of the heat shock genes, as determined by quantitative PCR (qPCR). This overexpression of asrA conferred short-term protection against lethal levels (4 μg/ml) of tobramycin but did not affect the tobramycin MIC. The RpoH heat shock sigma factor was found to be involved in the regulation of asrA in response to both heat shock and tobramycin at the posttranscriptional level. The results of this work suggest that the tobramycin concentration has a significant impact on the gene expression of P. aeruginosa, with lethal concentrations resulting in immediate adaptations conferring short-term protection, such as the induction of the heat shock response, and with subinhibitory concentrations leading to more sustainable long-term protection mechanisms, such as increased efflux.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vivo Host Environment Alters Pseudomonas aeruginosa Susceptibility to Aminoglycoside Antibiotics

During host infection, Pseudomonas aeruginosa coordinately regulates the expression of numerous genes to adapt to the host environment while counteracting host clearance mechanisms. As infected patients take antibiotics, the invading bacteria encounter antibiotics in the host milieu. P. aeruginosa is highly resistant to antibiotics due to multiple chromosomally encoded resistant determinants. A...

متن کامل

Contribution of stress responses to antibiotic tolerance in Pseudomonas aeruginosa biofilms.

Enhanced tolerance of biofilm-associated bacteria to antibiotic treatments is likely due to a combination of factors, including changes in cell physiology as bacteria adapt to biofilm growth and the inherent physiological heterogeneity of biofilm bacteria. In this study, a transcriptomics approach was used to identify genes differentially expressed during biofilm growth of Pseudomonas aeruginos...

متن کامل

Evaluation of the Phenotypic and Genotypic Effects of Satureja Khuzestanica Essence and Copper Nanocomplex on the Expression of Alkaline Protease Gene in Pseudomonas Aeruginosa by RT-PCR Method

  Background & aim: Pseudomonas aeruginosa is a gram-negative bacillus and an opportunistic pathogen that causes high mortality in immunocompromised patients. The main antimicrobial activity of Satureja khuzestanica essence is due to carvacrol phenolic components. Nanomaterials can be a good choice because of low toxicity to fight pathogenic microbes. The aim of this study was to evaluate the e...

متن کامل

Microbial pathogenesis in cystic fibrosis: co-ordinate regulation of heat-shock response and conversion to mucoidy in Pseudomonas aeruginosa.

Conversion of Pseudomonas aeruginosa to the mucoid phenotype plays a major role in the pathogenesis of respiratory infections in cystic fibrosis (CF). One mechanism responsible for mucoidy is based on mutations that inactivate the anti-sigma factor, MucA, which normally inhibits the alternative sigma factor, AIgU. The loss of MucA allows AIgU to freely direct transcription of the genes responsi...

متن کامل

Heat-shock response increases lung injury caused by Pseudomonas aeruginosa via an interleukin-10-dependent mechanism in mice.

BACKGROUND The heat-shock response (HSR) protects from insults, such as ischemia-reperfusion injury, by inhibiting signaling pathways activated by sterile inflammation. However, the mechanisms by which the HSR activation would modulate lung damage and host response to a bacterial lung infection remain unknown. METHODS HSR was activated with whole-body hyperthermia or by intraperitoneal geldan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Antimicrobial agents and chemotherapy

دوره 55 5  شماره 

صفحات  -

تاریخ انتشار 2011